TN -60 -~ C/R_
-39 7 wi
’ ,, WM
nhél 643

CONCURRENT FAULT DETECTION IN ?ZY

THE ATALLAH KOSARAJU DICTIONARY MACHINE

Marc D. Spaulding

Prithviraj Banerjee
e}
Z: =
g
o 3 3
= ‘1) =
P o ¥
= x
= -
-< —
Computer Systems Group
Coordinated Science Laboratory
University of Illinois .
1101 W. Springfield Av. «
Urbana, IL-61801
(217) 333-6564
(RASA—CE‘1810“‘3) CCNCUEBRRENT EA_UL‘I DETECIéON N87-7C
IN TEE ATALLAH KOSARAJT DICTICMAEY BACHLN
(11linois Univ.) 8 p Avail: MIS Unclas

00/60 0679399

* This research was supported in part by the National Aceronautics and Space Administration under Contract NASA
NAG 1-613.

1. INTRODUCTION

Recently, a number of tree-structured multiprocessor designs have been proposed [1, 2, 3, 4]
for performing operations on a dictionary data structure which consists of a set S of data elements,
each of which is composed of a key-record pair X =(k -). Here k is the key used for searching the
data element X and r is the record associated with it. The common operations supported by a dic-
tionary machine are: ‘Insert’ adds an element to S, ‘Delete’ removes an existing elemént from S.
‘Member' (or ‘Find’) determines if a certain element belongs to S, ‘Extract-Minimum’ and
‘Extract-Maximum’ determine the elements of S with minimum and maximum key values respec-
tively then remove that element and "Near’ obtains the element with the key value nearest to a

given key.

The number of processors needed to support dictionary operations on a large database tends to
be quite large if extremely fast processing of instructions is desired. The large number of proces-
sors in a system make it more vulnerable to failures, hence it is desirable to have some fault toler-
ance built into a system. Traditionally, fault tolerancé using dynamic redundancy has been viewed
as consisting of two parts: 1) fault detection/ location and 2) subsequent reconfiguration of the sys-
tem around the fault. Most of the work in fault tolerance in tree-structured multiprocessors have

addressed the second aspect, namely that of reconfiguring the system after a fault has been detected
[5.6.7.8]

The mechanism to detect/locate a faulty processor is assumed to be performed by periodic
testing which, unfortunately, is not applicable for detecting transient or intermittent failures.
Hence there is a need to build some concurrent fault detection mechanism into complex systems
designed for critical applications. In this paper we present a single fault-secure (transient and per-
maneat) version of the dictionary mﬁchine proposed by Atallah and Kosaraju [3]. The fault-secure
tecknique assures detection of the failure of any PE before incorrect results are output, given that
only cne PE fails at once. The addition of fault security to the machine requires that a small

amount of hardware be added: one PE, a comparator and the doubling of the number of data regis-

ters in the system. The performance of the fault secure machine is not degraded since it maintains

the O(log n) response time (n = number of records stored) and the pipelined nature of the

machine.

2. REVIEW OF THE ATALLAH-KOSARAJU DICTIONARY MACHINE

We describe here some of the aspects of the Atallah-Kosaraju dictionary machine in order to
make the fault security techniques and the reasons for the required hardware additions clear. For

a more extensive description of the machine, the reader is referred to [3].

The machine consists of a binary tree of PE's with communication occurring only between
father and son nodes of the tree. Each PE contains 3 registers (left, middle, right) in which key-
record (k.r) pairs are stored. The root PE handles all /O for the machine, since all instruction
input and machine responses come through the root node. The PE’s are numbered in breadth-first
order and each PE is aware of its number. We denote n to be the number of (k -) pairs currently

stored in the machine; this number is known to each PE.

Operations on the tree are handled so as to maintain the (k) pairs in a particular
configuration. The trees in Fig. 2a show examples of this configuration. A preorder traversal of the

tree will always yield a list of the (k) pairs sorted in ascending order by key value. Every PE

contains either three (k -) pairs or none, with the exception of the PE with address = IL;- which

has (n modulo 3) pairs. With this storage system the root PE always contains the minimum and
the maximum (k -) pairs in its left and right data registers respectively. The PE's which are on
the same level of the tree as the PE with p={n modulo 3] key-record pairs constitute the current

last level of the tree. PE's below this level do not take part in the machine’s operation until more

records are added.

Instructions are input at the root in a pipelined fashion and processed by all PE’s in a given
level at a time. If a response to an instruction is required it is generated by the concerned PE and

sent downward in the tree. This response will travel downward until it reaches the last level of

the tree, where it will be reflected to travel upward to be output by the root. This procedure

preserves the correct order of responses.

Examples of the insertion process are shown in Fig. 2a. In the insertion (deletion) of a (k)
pair one PE will increase (decrease) its number of (k 7) pairs; this PE will always be on the last
level of the tree and is referred to as the INCR (DECR). The rest of the PE’s effected by the opera-
tion will either move each of their (k -) pairs into its successor’s (next larger key) or predecessor’s 7-
(next smaller key) position in the tree, depending on the actual situation. The INCR and DECR PE's

provide the "slack” in the chain of (k .r) pairs needed to allow insertion or deletion of a (k) pair

from the tree.

The movement of (k.r) pairs to successor or predecessor positions, in response to a Delete,
Insert or Extract instruction, provides tie only mechanism through which (k .~) pairs in one sub-
tree of the root may move into the other subtree. It is important to note that such movement

requires that the (k) pair pass through the middle register of the root as this fact is key in

developing a fault secure machine.

3. CONCURRENT FAULT DETECTION SCHEME

“The fault secure technique is dependent upon the preorder storage of the (k.-) pairs in the
tree and the manner in which that storage scheme is maintained when Inserts, Deletes and Extrac-
tions are issued. In order to make the machine fault secure (for 1 PE failure at a time) we add an
additional set of three (k s) pair registers to each PE. Also, we add an additional root PE and a
comparator. The extra registers and root PE are used to store a second chain of (k 7) pairs in the
tree. The placement of the extra chain is a mirror image of the original chain. Fig. 1 shows the
fault secure machine with both chains of (k) pairs in evidence. We have essentially two trees of
stored (k) pairs supported by the same hardware, one the mirror of the other (call them T and
TM). For example, PE #2 stores keys 2, 6 and 10 for tree T, and 16,15 and 12 for tree TM.
whereas PE #3 stores keys 12, 15, 16 for tree T, and keys 10, 6 and 2 for tree TM. Note that PE

#4 and PE #7 have identical middle register contents (=4), PE #4°s left register and PE #7's right

register are identical as are their right and left registers respectively. The extra root PE serves as
the root of the mirror tree TM, and both roots receive identical instruction streams and interact

with only one set of the registers contained in PE’s 2 and 3 (sons of the roots).

The comparator serves two functions. First, the responses of the two roots are compared con-
tinuously. Second. the middle registers of the two roots are compared continuously. Any unequal
comparison result indicates that a PE is faulty within the machine; in the first case erroneous out-

puts are being detected, in the second, erroneous data is being passed from one subtree of the roots

to the other.

If a PE in the normal tree T fails, all responses concerning (k .-) pairs in that subtree of the
roots are suspect. The mirror tree TM, however, will have all of these same (k 7) pairs stored in
the PE's making up the other subtree of the roots. Thus any erroneous response generated because

of an erroneous (k ~) pair or PE in T will be compared to a correct response generated by TM and

thus detected.

This det.ectic;n method only breaks down when erroneous (k) pairs migrate from one sub-
tree of the roots to the other. In this way one faulty PE may corrupt both of the versions of a
(k r) pair present in the tree. This eventuality is prevented by the comparison of the middle regis-
ters of the two roots, through which such migrations must occur. Any such migration in T will be
reflected in TM, however, if the (k 7) pair is erroneous in one tree it will not be in the other so the
comparator will detect the error. In Figures 2a and 2b we show how this dual corruption by one PE

can happen, and is detected.

4. CONCL.USIONS

The nardware we have introduced into the machine has the affect of doubling the time
required by each PE to process an instruction. This causes the pipeline interval and response time
both to double but does not affect the basic O(log n) nature of the response time, nor the O(1)
nature of the pipeline interval found in the original machine. This hardware does not present a

large increase in the amount of system hardware because the PE's are quite complex and a large

number are likely to be included in any dictionary machine. Thus three extra registers in each PE

will not increase system size prohibitively. Lastly, it is necessary to note that no new techniques

are required to produce a fault secure version of either of the two redundant instruction handling

machines described by Atallah and Kosaraju.

[1]
[2]
[3]
[4]
(5]
l6]

(7]
(8]

REFERENCES

AK.Somani and V.K.Agarwal, “An Efficient Unsorted VLSI Dictionary Machine,” JEEE
Trans. on Computers, vol. C-34, no.9, pp. 841-852, September 1985.

T. A. Ottmann, A. L. Rosenberg, and L. J. Stockmeyer, ““A Dictionary Machine (for VLSI),”
1EEE Trans. on Computers, vol. C-31, no.9. pp. 892-897, September 1982.

M. J. Atallah and S. R. Kosaraju, “A Generalized Dictionary Machine for VLSL," IEEE Trans.
on Computers, vol. C-34, no.2, pp. 151-155, Feb 1985.

A.L.Fisher, “Dictionary Machines with a Small Number of Processors,” 1Ith annual confer-
ence on Computer Architecture, pp. 151-156, 1984.

C. S. Raghavendra. A. Avizienis, and M. Ercegovac, “Fault-Tolerance in Binary Tree Archi-
tectures,” in Proc. 13th Int. Symp. on Fault-Tolerant Computing. pp. 360-364, Jun. 1983.

F. R. K. Chung. F. T. Leighton, and A. L. Rosenberg. “DIOGENES: A Methodology for
Designing Fault-Tolerant VLSI Processor Arrays,” in Proc. 13th Int. Symp. on Fault-Tolerant
Computing. pp. 26-32, Jun. 1983.

A. S. M. Hassan and V. K. Agarwal, “A Modular Approach to Fault-Tolerant Binary Tree
Architectures,” Proc. 15th Int. Symp. on Fault-Tolerant Computing, pp. 344-349, June 1985.

B. O. A. Grey, A. Avizienis, and D. A. Rennels, A Fault-Tolerant Architecture for Network

Storage Systems,” in Proc. I4th Int. Symp. on Fault-Tolerant Computing. pp. 232-239, Jun.
1984.

INTHOVA 3¥N03S 11NV

3341 ¥ONMIW Ni Q3MOLS ¥V
s¥ivd (¥°%) 40 sA3x a3xos []

TVAYON HO 3381 YOUHIW ¥3HLII

*INVId 3INO ATINO NO SNOILI3NNOD ---==-- 1NdN1 1NdN|
¥01VYVdNOD

1nd1nO0 IYNOIS
alavAa JOy3

L 34NO 13

¥ivd (¥'M) Vv
40 ¥3IgWNN A3

NOI133130 SLI OGNV ‘3d ALINVA 3NO AB S33ULENS HLOB NI VLVO 40 NOILdJNYHOD
3HL S31VHISNOWIA INIHOVW 3HL OLNI S¥Ivd (¥'¥) 2 40 NOILN¥3SNI 7 JYND |

YOUYI NV TVNOIS 1T1IM JOLVYYVINOD 3IHL
©f 3d A8 031dNYHOD N338 MON 3IAVH ONY IYND3NN MON 3¥Y S100¥ 3HL 40 S¥ivd (¥°M) 031dNy¥¥0D
¥ivd (¥°M) Ot=3 3IHL 40 S31d0JD HL08 SY3ILSI93¥ 3700IN 3HL 40 SIN3ILINOD 3HL 3LVIION]T SA3N 037010

9°6=X '¥ivd (¥°M) L¥3ISNI G 6=M ‘¥Ivd (¥'M) L¥3ISNI AlLINvd St c# 34

33yl
HOYU N

(8)

33yl
IYMION

(v)

